Test two objects for inequality.
Test two objects for inequality.
true
if !(this == that), false otherwise.
Equivalent to x.hashCode
except for boxed numeric types and null
.
Equivalent to x.hashCode
except for boxed numeric types and null
.
For numerics, it returns a hash value which is consistent
with value equality: if two value type instances compare
as true, then ## will produce the same hash value for each
of them.
For null
returns a hashcode where null.hashCode
throws a
NullPointerException
.
a hash value consistent with ==
[use case] Returns a new collection containing the elements from the left hand operand followed by the elements from the right hand operand.
Returns a new collection containing the elements from the left hand operand followed by the elements from the right hand operand. The element type of the collection is the most specific superclass encompassing the element types of the two operands.
Example:
scala> val a = List(1) a: List[Int] = List(1) scala> val b = List(2) b: List[Int] = List(2) scala> val c = a ++ b c: List[Int] = List(1, 2) scala> val d = List('a') d: List[Char] = List(a) scala> val e = c ++ d e: List[AnyVal] = List(1, 2, a)
the element type of the returned collection.
the traversable to append.
a new collection which contains all elements of this collection
followed by all elements of that
.
As with ++
, returns a new collection containing the elements from the
left operand followed by the elements from the right operand.
As with ++
, returns a new collection containing the elements from the
left operand followed by the elements from the right operand.
It differs from ++
in that the right operand determines the type of
the resulting collection rather than the left one.
Mnemonic: the COLon is on the side of the new COLlection type.
Example:
scala> val x = List(1) x: List[Int] = List(1) scala> val y = LinkedList(2) y: scala.collection.mutable.LinkedList[Int] = LinkedList(2) scala> val z = x ++: y z: scala.collection.mutable.LinkedList[Int] = LinkedList(1, 2)
This overload exists because: for the implementation of ++:
we should
reuse that of ++
because many collections override it with more
efficient versions.
Since TraversableOnce
has no ++
method, we have to implement that
directly, but Traversable
and down can use the overload.
the element type of the returned collection.
the class of the returned collection. Where possible, That
is
the same class as the current collection class Repr
, but this
depends on the element type B
being admissible for that class,
which means that an implicit instance of type CanBuildFrom[Repr, B, That]
is found.
the traversable to append.
an implicit value of class CanBuildFrom
which determines
the result class That
from the current representation type Repr
and
and the new element type B
.
a new collection of type That
which contains all elements
of this collection followed by all elements of that
.
[use case] As with ++
, returns a new collection containing the elements from the left operand followed by the
elements from the right operand.
As with ++
, returns a new collection containing the elements from the left operand followed by the
elements from the right operand.
It differs from ++
in that the right operand determines the type of
the resulting collection rather than the left one.
Mnemonic: the COLon is on the side of the new COLlection type.
Example:
scala> val x = List(1) x: List[Int] = List(1) scala> val y = LinkedList(2) y: scala.collection.mutable.LinkedList[Int] = LinkedList(2) scala> val z = x ++: y z: scala.collection.mutable.LinkedList[Int] = LinkedList(1, 2)
the element type of the returned collection.
the traversable to append.
a new collection which contains all elements of this collection
followed by all elements of that
.
Applies a binary operator to a start value and all elements of this collection, going left to right.
Applies a binary operator to a start value and all elements of this collection, going left to right.
Note: /:
is alternate syntax for foldLeft
; z /: xs
is the same as
xs foldLeft z
.
Examples:
Note that the folding function used to compute b is equivalent to that used to compute c.
scala> val a = List(1,2,3,4) a: List[Int] = List(1, 2, 3, 4) scala> val b = (5 /: a)(_+_) b: Int = 15 scala> val c = (5 /: a)((x,y) => x + y) c: Int = 15
Note: will not terminate for infinite-sized collections.
Note: might return different results for different runs, unless the underlying collection type is ordered. or the operator is associative and commutative.
the result type of the binary operator.
the start value.
the binary operator.
the result of inserting op
between consecutive elements of this collection,
going left to right with the start value z
on the left:
op(...op(op(z, x_1), x_2), ..., x_n)
where x1, ..., xn
are the elements of this collection.
Applies a binary operator to all elements of this collection and a start value, going right to left.
Applies a binary operator to all elements of this collection and a start value, going right to left.
Note: :\
is alternate syntax for foldRight
; xs :\ z
is the same as
xs foldRight z
.
Note: will not terminate for infinite-sized collections.
Note: might return different results for different runs, unless the underlying collection type is ordered. or the operator is associative and commutative.
Examples:
Note that the folding function used to compute b is equivalent to that used to compute c.
scala> val a = List(1,2,3,4) a: List[Int] = List(1, 2, 3, 4) scala> val b = (a :\ 5)(_+_) b: Int = 15 scala> val c = (a :\ 5)((x,y) => x + y) c: Int = 15
the result type of the binary operator.
the start value
the binary operator
the result of inserting op
between consecutive elements of this collection,
going right to left with the start value z
on the right:
op(x_1, op(x_2, ... op(x_n, z)...))
where x1, ..., xn
are the elements of this collection.
Test two objects for equality.
Test two objects for equality.
The expression x == that
is equivalent to if (x eq null) that eq null else x.equals(that)
.
true
if the receiver object is equivalent to the argument; false
otherwise.
Appends all elements of this collection to a string builder.
Appends all elements of this collection to a string builder.
The written text consists of the string representations (w.r.t. the method
toString
) of all elements of this collection without any separator string.
Example:
scala> val a = List(1,2,3,4) a: List[Int] = List(1, 2, 3, 4) scala> val b = new StringBuilder() b: StringBuilder = scala> val h = a.addString(b) h: StringBuilder = 1234
the string builder to which elements are appended.
the string builder b
to which elements were appended.
Appends all elements of this collection to a string builder using a separator string.
Appends all elements of this collection to a string builder using a separator string.
The written text consists of the string representations (w.r.t. the method toString
)
of all elements of this collection, separated by the string sep
.
Example:
scala> val a = List(1,2,3,4) a: List[Int] = List(1, 2, 3, 4) scala> val b = new StringBuilder() b: StringBuilder = scala> a.addString(b, ", ") res0: StringBuilder = 1, 2, 3, 4
the string builder to which elements are appended.
the separator string.
the string builder b
to which elements were appended.
Appends all elements of this collection to a string builder using start, end, and separator strings.
Appends all elements of this collection to a string builder using start, end, and separator strings.
The written text begins with the string start
and ends with the string end
.
Inside, the string representations (w.r.t. the method toString
)
of all elements of this collection are separated by the string sep
.
Example:
scala> val a = List(1,2,3,4) a: List[Int] = List(1, 2, 3, 4) scala> val b = new StringBuilder() b: StringBuilder = scala> a.addString(b , "List(" , ", " , ")") res5: StringBuilder = List(1, 2, 3, 4)
the string builder to which elements are appended.
the starting string.
the separator string.
the ending string.
the string builder b
to which elements were appended.
Aggregates the results of applying an operator to subsequent elements.
Aggregates the results of applying an operator to subsequent elements.
This is a more general form of fold
and reduce
. It has similar
semantics, but does not require the result to be a supertype of the
element type. It traverses the elements in different partitions
sequentially, using seqop
to update the result, and then applies
combop
to results from different partitions. The implementation of
this operation may operate on an arbitrary number of collection
partitions, so combop
may be invoked an arbitrary number of times.
For example, one might want to process some elements and then produce
a Set
. In this case, seqop
would process an element and append it
to the list, while combop
would concatenate two lists from different
partitions together. The initial value z
would be an empty set.
pc.aggregate(Set[Int]())(_ += process(_), _ ++ _)
Another example is calculating geometric mean from a collection of doubles (one would typically require big doubles for this).
the type of accumulated results
the initial value for the accumulated result of the partition - this
will typically be the neutral element for the seqop
operator (e.g.
Nil
for list concatenation or 0
for summation) and may be evaluated
more than once
an operator used to accumulate results within a partition
an associative operator used to combine results from different partitions
Cast the receiver object to be of type T0
.
Cast the receiver object to be of type T0
.
Note that the success of a cast at runtime is modulo Scala's erasure semantics.
Therefore the expression 1.asInstanceOf[String]
will throw a ClassCastException
at
runtime, while the expression List(1).asInstanceOf[List[String]]
will not.
In the latter example, because the type argument is erased as part of compilation it is
not possible to check whether the contents of the list are of the requested type.
the receiver object.
ClassCastException
if the receiver object is not an instance of the erasure of type T0
.
[use case] Builds a new collection by applying a partial function to all elements of this collection on which the function is defined.
Builds a new collection by applying a partial function to all elements of this collection on which the function is defined.
the element type of the returned collection.
the partial function which filters and maps the collection.
a new collection resulting from applying the given partial function
pf
to each element on which it is defined and collecting the results.
The order of the elements is preserved.
Finds the first element of the collection for which the given partial function is defined, and applies the partial function to it.
Finds the first element of the collection for which the given partial function is defined, and applies the partial function to it.
Note: may not terminate for infinite-sized collections.
Note: might return different results for different runs, unless the underlying collection type is ordered.
the partial function
an option value containing pf applied to the first
value for which it is defined, or None
if none exists.
Seq("a", 1, 5L).collectFirst({ case x: Int => x*10 }) = Some(10)
The factory companion object that builds instances of class Traversable.
The factory companion object that builds instances of class Traversable.
(or its Iterable
superclass where class Traversable is not a Seq
.)
[use case] Copies elements of this collection to an array.
Copies elements of this collection to an array.
Fills the given array xs
with at most len
elements of
this collection, starting at position start
.
Copying will stop once either the end of the current collection is reached,
or the end of the array is reached, or len
elements have been copied.
the array to fill.
the starting index.
the maximal number of elements to copy.
[use case] Copies values of this collection to an array.
Copies values of this collection to an array.
Fills the given array xs
with values of this collection.
Copying will stop once either the end of the current collection is reached,
or the end of the array is reached.
the array to fill.
[use case] Copies values of this collection to an array.
Copies values of this collection to an array.
Fills the given array xs
with values of this collection, beginning at index start
.
Copying will stop once either the end of the current collection is reached,
or the end of the array is reached.
the array to fill.
the starting index.
Copies all elements of this collection to a buffer.
Copies all elements of this collection to a buffer.
Note: will not terminate for infinite-sized collections.
The buffer to which elements are copied.
Counts the number of elements in the collection which satisfy a predicate.
Counts the number of elements in the collection which satisfy a predicate.
the predicate used to test elements.
the number of elements satisfying the predicate p
.
Selects all elements except first n ones.
Selects all elements except first n ones.
Note: might return different results for different runs, unless the underlying collection type is ordered.
the number of elements to drop from this collection.
a collection consisting of all elements of this collection except the first n
ones, or else the
empty collection, if this collection has less than n
elements.
Drops longest prefix of elements that satisfy a predicate.
Drops longest prefix of elements that satisfy a predicate.
Note: might return different results for different runs, unless the underlying collection type is ordered.
the longest suffix of this collection whose first element
does not satisfy the predicate p
.
Selects all elements of this collection which do not satisfy a predicate.
Selects all elements of this collection which do not satisfy a predicate.
the predicate used to test elements.
a new collection consisting of all elements of this collection that do not satisfy the given
predicate p
. The order of the elements is preserved.
Finds the first element of the collection satisfying a predicate, if any.
Finds the first element of the collection satisfying a predicate, if any.
Note: may not terminate for infinite-sized collections.
Note: might return different results for different runs, unless the underlying collection type is ordered.
the predicate used to test elements.
an option value containing the first element in the collection
that satisfies p
, or None
if none exists.
[use case] Converts this collection of traversable collections into a collection formed by the elements of these traversable collections.
Converts this collection of traversable collections into a collection formed by the elements of these traversable collections.
The resulting collection's type will be guided by the static type of collection. For example:
val xs = List( Set(1, 2, 3), Set(1, 2, 3) ).flatten // xs == List(1, 2, 3, 1, 2, 3) val ys = Set( List(1, 2, 3), List(3, 2, 1) ).flatten // ys == Set(1, 2, 3)
the type of the elements of each traversable collection.
a new collection resulting from concatenating all element collections.
Folds the elements of this collection using the specified associative binary operator.
Folds the elements of this collection using the specified associative binary operator.
The order in which operations are performed on elements is unspecified and may be nondeterministic.
a type parameter for the binary operator, a supertype of A
.
a neutral element for the fold operation; may be added to the result
an arbitrary number of times, and must not change the result (e.g., Nil
for list concatenation,
0 for addition, or 1 for multiplication.)
a binary operator that must be associative
the result of applying fold operator op
between all the elements and z
Applies a binary operator to a start value and all elements of this collection, going left to right.
Applies a binary operator to a start value and all elements of this collection, going left to right.
Note: will not terminate for infinite-sized collections.
Note: might return different results for different runs, unless the underlying collection type is ordered. or the operator is associative and commutative.
the result type of the binary operator.
the start value.
the binary operator.
the result of inserting op
between consecutive elements of this collection,
going left to right with the start value z
on the left:
op(...op(z, x_1), x_2, ..., x_n)
where x1, ..., xn
are the elements of this collection.
Applies a binary operator to all elements of this collection and a start value, going right to left.
Applies a binary operator to all elements of this collection and a start value, going right to left.
Note: will not terminate for infinite-sized collections.
Note: might return different results for different runs, unless the underlying collection type is ordered. or the operator is associative and commutative.
the result type of the binary operator.
the start value.
the binary operator.
the result of inserting op
between consecutive elements of this collection,
going right to left with the start value z
on the right:
op(x_1, op(x_2, ... op(x_n, z)...))
where x1, ..., xn
are the elements of this collection.
Returns string formatted according to given format
string.
Returns string formatted according to given format
string.
Format strings are as for String.format
(@see java.lang.String.format).
The generic builder that builds instances of Traversable at arbitrary element types.
The generic builder that builds instances of Traversable at arbitrary element types.
Returns the runtime class representation of the object.
Partitions this collection into a map of collections according to some discriminator function.
Partitions this collection into a map of collections according to some discriminator function.
Note: this method is not re-implemented by views. This means when applied to a view it will always force the view and return a new collection.
the type of keys returned by the discriminator function.
the discriminator function.
A map from keys to collections such that the following invariant holds:
(xs groupBy f)(k) = xs filter (x => f(x) == k)
That is, every key k
is bound to a collection of those elements x
for which f(x)
equals k
.
Tests whether this collection is known to have a finite size.
Tests whether this collection is known to have a finite size.
All strict collections are known to have finite size. For a non-strict
collection such as Stream
, the predicate returns true
if all
elements have been computed. It returns false
if the stream is
not yet evaluated to the end.
Note: many collection methods will not work on collections of infinite sizes.
true
if this collection is known to have finite size,
false
otherwise.
Selects the first element of this collection.
Selects the first element of this collection.
Note: might return different results for different runs, unless the underlying collection type is ordered.
the first element of this collection.
NoSuchElementException
if the collection is empty.
Optionally selects the first element.
Optionally selects the first element.
Note: might return different results for different runs, unless the underlying collection type is ordered.
the first element of this collection if it is nonempty,
None
if it is empty.
Selects all elements except the last.
Selects all elements except the last.
Note: might return different results for different runs, unless the underlying collection type is ordered.
a collection consisting of all elements of this collection except the last one.
UnsupportedOperationException
if the collection is empty.
Iterates over the inits of this collection.
Iterates over the inits of this collection. The first value will be this
collection and the final one will be an empty collection, with the intervening
values the results of successive applications of init
.
an iterator over all the inits of this collection
List(1,2,3).inits = Iterator(List(1,2,3), List(1,2), List(1), Nil)
Tests whether this collection is empty.
Tests whether this collection is empty.
true
if the collection contain no elements, false
otherwise.
Test whether the dynamic type of the receiver object is T0
.
Test whether the dynamic type of the receiver object is T0
.
Note that the result of the test is modulo Scala's erasure semantics.
Therefore the expression 1.isInstanceOf[String]
will return false
, while the
expression List(1).isInstanceOf[List[String]]
will return true
.
In the latter example, because the type argument is erased as part of compilation it is
not possible to check whether the contents of the list are of the specified type.
true
if the receiver object is an instance of erasure of type T0
; false
otherwise.
Tests whether this collection can be repeatedly traversed.
Tests whether this collection can be repeatedly traversed.
true
Selects the last element.
Selects the last element.
Note: might return different results for different runs, unless the underlying collection type is ordered.
The last element of this collection.
NoSuchElementException
If the collection is empty.
Optionally selects the last element.
Optionally selects the last element.
Note: might return different results for different runs, unless the underlying collection type is ordered.
the last element of this collection$ if it is nonempty,
None
if it is empty.
[use case] Finds the largest element.
Finds the largest element.
the largest element of this collection.
[use case] Finds the first element which yields the largest value measured by function f.
Finds the first element which yields the largest value measured by function f.
The result type of the function f.
The measuring function.
the first element of this collection with the largest value measured by function f.
[use case] Finds the smallest element.
Finds the smallest element.
the smallest element of this collection
[use case] Finds the first element which yields the smallest value measured by function f.
Finds the first element which yields the smallest value measured by function f.
The result type of the function f.
The measuring function.
the first element of this collection with the smallest value measured by function f.
Displays all elements of this collection in a string.
Displays all elements of this collection in a string.
a string representation of this collection. In the resulting string
the string representations (w.r.t. the method toString
)
of all elements of this collection follow each other without any
separator string.
Displays all elements of this collection in a string using a separator string.
Displays all elements of this collection in a string using a separator string.
the separator string.
a string representation of this collection. In the resulting string
the string representations (w.r.t. the method toString
)
of all elements of this collection are separated by the string sep
.
List(1, 2, 3).mkString("|") = "1|2|3"
Displays all elements of this collection in a string using start, end, and separator strings.
Displays all elements of this collection in a string using start, end, and separator strings.
the starting string.
the separator string.
the ending string.
a string representation of this collection. The resulting string
begins with the string start
and ends with the string
end
. Inside, the string representations (w.r.t. the method
toString
) of all elements of this collection are separated by
the string sep
.
List(1, 2, 3).mkString("(", "; ", ")") = "(1; 2; 3)"
Tests whether the collection is not empty.
Tests whether the collection is not empty.
true
if the collection contains at least one element, false
otherwise.
Returns a parallel implementation of this collection.
Returns a parallel implementation of this collection.
For most collection types, this method creates a new parallel collection by copying
all the elements. For these collection, par
takes linear time. Mutable collections
in this category do not produce a mutable parallel collection that has the same
underlying dataset, so changes in one collection will not be reflected in the other one.
Specific collections (e.g. ParArray
or mutable.ParHashMap
) override this default
behaviour by creating a parallel collection which shares the same underlying dataset.
For these collections, par
takes constant or sublinear time.
All parallel collections return a reference to themselves.
a parallel implementation of this collection
Partitions this collection in two collections according to a predicate.
Partitions this collection in two collections according to a predicate.
the predicate on which to partition.
a pair of collections: the first collection consists of all elements that
satisfy the predicate p
and the second collection consists of all elements
that don't. The relative order of the elements in the resulting collections
is the same as in the original collection.
[use case] Multiplies up the elements of this collection.
Multiplies up the elements of this collection.
the product of all elements in this collection of numbers of type Int
.
Instead of Int
, any other type T
with an implicit Numeric[T]
implementation
can be used as element type of the collection and as result type of product
.
Examples of such types are: Long
, Float
, Double
, BigInt
.
Reduces the elements of this collection using the specified associative binary operator.
Reduces the elements of this collection using the specified associative binary operator.
The order in which operations are performed on elements is unspecified and may be nondeterministic.
A type parameter for the binary operator, a supertype of A
.
A binary operator that must be associative.
The result of applying reduce operator op
between all the elements if the collection is nonempty.
UnsupportedOperationException
if this collection is empty.
Applies a binary operator to all elements of this collection, going left to right.
Applies a binary operator to all elements of this collection, going left to right.
Note: will not terminate for infinite-sized collections.
Note: might return different results for different runs, unless the underlying collection type is ordered. or the operator is associative and commutative.
the result type of the binary operator.
the binary operator.
the result of inserting op
between consecutive elements of this collection,
going left to right:
op( op( ... op(x_1, x_2) ..., x_{n-1}), x_n)
where x1, ..., xn
are the elements of this collection.
UnsupportedOperationException
if this collection is empty.
Optionally applies a binary operator to all elements of this collection, going left to right.
Optionally applies a binary operator to all elements of this collection, going left to right.
Note: will not terminate for infinite-sized collections.
Note: might return different results for different runs, unless the underlying collection type is ordered. or the operator is associative and commutative.
the result type of the binary operator.
the binary operator.
an option value containing the result of reduceLeft(op)
if this collection is nonempty,
None
otherwise.
Reduces the elements of this collection, if any, using the specified associative binary operator.
Reduces the elements of this collection, if any, using the specified associative binary operator.
The order in which operations are performed on elements is unspecified and may be nondeterministic.
A type parameter for the binary operator, a supertype of A
.
A binary operator that must be associative.
An option value containing result of applying reduce operator op
between all
the elements if the collection is nonempty, and None
otherwise.
Applies a binary operator to all elements of this collection, going right to left.
Applies a binary operator to all elements of this collection, going right to left.
Note: will not terminate for infinite-sized collections.
Note: might return different results for different runs, unless the underlying collection type is ordered. or the operator is associative and commutative.
the result type of the binary operator.
the binary operator.
the result of inserting op
between consecutive elements of this collection,
going right to left:
op(x_1, op(x_2, ..., op(x_{n-1}, x_n)...))
where x1, ..., xn
are the elements of this collection.
UnsupportedOperationException
if this collection is empty.
Optionally applies a binary operator to all elements of this collection, going right to left.
Optionally applies a binary operator to all elements of this collection, going right to left.
Note: will not terminate for infinite-sized collections.
Note: might return different results for different runs, unless the underlying collection type is ordered. or the operator is associative and commutative.
the result type of the binary operator.
the binary operator.
an option value containing the result of reduceRight(op)
if this collection is nonempty,
None
otherwise.
The collection of type collection underlying this TraversableLike
object.
The collection of type collection underlying this TraversableLike
object.
By default this is implemented as the TraversableLike
object itself,
but this can be overridden.
Computes a prefix scan of the elements of the collection.
Computes a prefix scan of the elements of the collection.
Note: The neutral element z
may be applied more than once.
element type of the resulting collection
type of the resulting collection
neutral element for the operator op
the associative operator for the scan
combiner factory which provides a combiner
a new collection containing the prefix scan of the elements in this collection
Produces a collection containing cumulative results of applying the operator going left to right.
Produces a collection containing cumulative results of applying the operator going left to right.
Note: will not terminate for infinite-sized collections.
Note: might return different results for different runs, unless the underlying collection type is ordered.
the type of the elements in the resulting collection
the actual type of the resulting collection
the initial value
the binary operator applied to the intermediate result and the element
an implicit value of class CanBuildFrom
which determines
the result class That
from the current representation type Repr
and
and the new element type B
.
collection with intermediate results
Produces a collection containing cumulative results of applying the operator going right to left.
Produces a collection containing cumulative results of applying the operator going right to left. The head of the collection is the last cumulative result.
Note: will not terminate for infinite-sized collections.
Note: might return different results for different runs, unless the underlying collection type is ordered.
Example:
List(1, 2, 3, 4).scanRight(0)(_ + _) == List(10, 9, 7, 4, 0)
the type of the elements in the resulting collection
the actual type of the resulting collection
the initial value
the binary operator applied to the intermediate result and the element
an implicit value of class CanBuildFrom
which determines
the result class That
from the current representation type Repr
and
and the new element type B
.
collection with intermediate results
(Changed in version 2.9.0) The behavior of scanRight
has changed. The previous behavior can be reproduced with scanRight.reverse.
A version of this collection with all of the operations implemented sequentially (i.e., in a single-threaded manner).
A version of this collection with all of the operations implemented sequentially (i.e., in a single-threaded manner).
This method returns a reference to this collection. In parallel collections, it is redefined to return a sequential implementation of this collection. In both cases, it has O(1) complexity.
a sequential view of the collection.
The size of this collection.
The size of this collection.
Note: will not terminate for infinite-sized collections.
the number of elements in this collection.
Selects an interval of elements.
Selects an interval of elements. The returned collection is made up
of all elements x
which satisfy the invariant:
from <= indexOf(x) < until
Note: might return different results for different runs, unless the underlying collection type is ordered.
a collection containing the elements greater than or equal to
index from
extending up to (but not including) index until
of this collection.
Splits this collection into a prefix/suffix pair according to a predicate.
Splits this collection into a prefix/suffix pair according to a predicate.
Note: c span p
is equivalent to (but possibly more efficient than)
(c takeWhile p, c dropWhile p)
, provided the evaluation of the
predicate p
does not cause any side-effects.
Note: might return different results for different runs, unless the underlying collection type is ordered.
a pair consisting of the longest prefix of this collection whose
elements all satisfy p
, and the rest of this collection.
Splits this collection into two at a given position.
Splits this collection into two at a given position.
Note: c splitAt n
is equivalent to (but possibly more efficient than)
(c take n, c drop n)
.
Note: might return different results for different runs, unless the underlying collection type is ordered.
the position at which to split.
a pair of collections consisting of the first n
elements of this collection, and the other elements.
Defines the prefix of this object's toString
representation.
Defines the prefix of this object's toString
representation.
a string representation which starts the result of toString
applied to this collection. By default the string prefix is the
simple name of the collection class collection.
[use case] Sums up the elements of this collection.
Sums up the elements of this collection.
the sum of all elements in this collection of numbers of type Int
.
Instead of Int
, any other type T
with an implicit Numeric[T]
implementation
can be used as element type of the collection and as result type of sum
.
Examples of such types are: Long
, Float
, Double
, BigInt
.
Selects all elements except the first.
Selects all elements except the first.
Note: might return different results for different runs, unless the underlying collection type is ordered.
a collection consisting of all elements of this collection except the first one.
`UnsupportedOperationException`
if the collection is empty.
Iterates over the tails of this collection.
Iterates over the tails of this collection. The first value will be this
collection and the final one will be an empty collection, with the intervening
values the results of successive applications of tail
.
an iterator over all the tails of this collection
List(1,2,3).tails = Iterator(List(1,2,3), List(2,3), List(3), Nil)
Selects first n elements.
Selects first n elements.
Note: might return different results for different runs, unless the underlying collection type is ordered.
the number of elements to take from this collection.
a collection consisting only of the first n
elements of this collection,
or else the whole collection, if it has less than n
elements.
Takes longest prefix of elements that satisfy a predicate.
Takes longest prefix of elements that satisfy a predicate.
Note: might return different results for different runs, unless the underlying collection type is ordered.
the longest prefix of this collection whose elements all satisfy
the predicate p
.
[use case] Converts this collection into another by copying all elements.
Converts this collection into another by copying all elements.
The collection type to build.
a new collection containing all elements of this collection.
[use case] Converts this collection to an array.
Converts this collection to an array.
an array containing all elements of this collection.
An ClassTag
must be available for the element type of this collection.
Uses the contents of this collection to create a new mutable buffer.
Uses the contents of this collection to create a new mutable buffer.
Note: will not terminate for infinite-sized collections.
a buffer containing all elements of this collection.
Converts this collection to an indexed sequence.
Converts this collection to an indexed sequence.
Note: will not terminate for infinite-sized collections.
an indexed sequence containing all elements of this collection.
Converts this collection to an iterable collection.
Converts this collection to an iterable collection. Note that
the choice of target Iterable
is lazy in this default implementation
as this TraversableOnce
may be lazy and unevaluated (i.e. it may
be an iterator which is only traversable once).
Note: will not terminate for infinite-sized collections.
an Iterable
containing all elements of this collection.
Returns an Iterator over the elements in this collection.
Returns an Iterator over the elements in this collection. Will return the same Iterator if this instance is already an Iterator.
Note: will not terminate for infinite-sized collections.
an Iterator containing all elements of this collection.
Converts this collection to a list.
Converts this collection to a list.
Note: will not terminate for infinite-sized collections.
a list containing all elements of this collection.
[use case] Converts this collection to a map.
Converts this collection to a map. This method is unavailable unless the elements are members of Tuple2, each ((T, U)) becoming a key-value pair in the map. Duplicate keys will be overwritten by later keys: if this is an unordered collection, which key is in the resulting map is undefined.
a map of type immutable.Map[T, U]
containing all key/value pairs of type (T, U)
of this collection.
Converts this collection to a sequence.
Converts this collection to a sequence. As with toIterable
, it's lazy
in this default implementation, as this TraversableOnce
may be
lazy and unevaluated.
Note: will not terminate for infinite-sized collections.
a sequence containing all elements of this collection.
Converts this collection to a set.
Converts this collection to a set.
Note: will not terminate for infinite-sized collections.
a set containing all elements of this collection.
Converts this collection to a stream.
Converts this collection to a stream.
a stream containing all elements of this collection.
Returns a string representation of the object.
Returns a string representation of the object.
The default representation is platform dependent.
a string representation of the object.
Converts this collection to an unspecified Traversable.
Converts this collection to an unspecified Traversable. Will return the same collection if this instance is already Traversable.
Note: will not terminate for infinite-sized collections.
a Traversable containing all elements of this collection.
Converts this collection to a Vector.
Converts this collection to a Vector.
Note: will not terminate for infinite-sized collections.
a vector containing all elements of this collection.
Transposes this collection of traversable collections into a collection of collections.
Transposes this collection of traversable collections into a collection of collections.
The resulting collection's type will be guided by the static type of collection. For example:
val xs = List( Set(1, 2, 3), Set(4, 5, 6)).transpose // xs == List( // List(1, 4), // List(2, 5), // List(3, 6)) val ys = Vector( List(1, 2, 3), List(4, 5, 6)).transpose // ys == Vector( // Vector(1, 4), // Vector(2, 5), // Vector(3, 6))
the type of the elements of each traversable collection.
an implicit conversion which asserts that the
element type of this collection is a Traversable
.
a two-dimensional collection of collections which has as nth row the nth column of this collection.
(Changed in version 2.9.0) transpose
throws an IllegalArgumentException
if collections are not uniformly sized.
IllegalArgumentException
if all collections in this collection
are not of the same size.
Converts this collection of pairs into two collections of the first and second half of each pair.
Converts this collection of pairs into two collections of the first and second half of each pair.
val xs = Traversable( (1, "one"), (2, "two"), (3, "three")).unzip // xs == (Traversable(1, 2, 3), // Traversable(one, two, three))
the type of the first half of the element pairs
the type of the second half of the element pairs
an implicit conversion which asserts that the element type of this collection is a pair.
a pair of collections, containing the first, respectively second half of each element pair of this collection.
Converts this collection of triples into three collections of the first, second, and third element of each triple.
Converts this collection of triples into three collections of the first, second, and third element of each triple.
val xs = Traversable( (1, "one", '1'), (2, "two", '2'), (3, "three", '3')).unzip3 // xs == (Traversable(1, 2, 3), // Traversable(one, two, three), // Traversable(1, 2, 3))
the type of the first member of the element triples
the type of the second member of the element triples
the type of the third member of the element triples
an implicit conversion which asserts that the element type of this collection is a triple.
a triple of collections, containing the first, second, respectively third member of each element triple of this collection.
Creates a non-strict view of a slice of this collection.
Creates a non-strict view of a slice of this collection.
Note: the difference between view
and slice
is that view
produces
a view of the current collection, whereas slice
produces a new collection.
Note: view(from, to)
is equivalent to view.slice(from, to)
Note: might return different results for different runs, unless the underlying collection type is ordered.
the index of the first element of the view
the index of the element following the view
a non-strict view of a slice of this collection, starting at index from
and extending up to (but not including) index until
.
Creates a non-strict view of this collection.
Creates a non-strict view of this collection.
a non-strict view of this collection.
Creates a non-strict filter of this collection.
Creates a non-strict filter of this collection.
Note: the difference between c filter p
and c withFilter p
is that
the former creates a new collection, whereas the latter only
restricts the domain of subsequent map
, flatMap
, foreach
,
and withFilter
operations.
Note: might return different results for different runs, unless the underlying collection type is ordered.
the predicate used to test elements.
an object of class WithFilter
, which supports
map
, flatMap
, foreach
, and withFilter
operations.
All these operations apply to those elements of this collection
which satisfy the predicate p
.
Tests whether a predicate holds for some of the elements of this collection.
Tests whether a predicate holds for some of the elements of this collection.
Note: may not terminate for infinite-sized collections.
the predicate used to test elements.
false
if this collection is empty, otherwise true
if the given predicate p
holds for some of the elements of this collection, otherwise false
(tuple2Zipped: Traversable[(El1, El2)]).exists(p)
Selects all elements of this collection which satisfy a predicate.
Selects all elements of this collection which satisfy a predicate.
the predicate used to test elements.
a new collection consisting of all elements of this collection that satisfy the given
predicate p
. The order of the elements is preserved.
(tuple2Zipped: Traversable[(El1, El2)]).filter(p)
[use case] Builds a new collection by applying a function to all elements of this collection and using the elements of the resulting collections.
Builds a new collection by applying a function to all elements of this collection and using the elements of the resulting collections.
For example:
def getWords(lines: Seq[String]): Seq[String] = lines flatMap (line => line split "\\W+")
The type of the resulting collection is guided by the static type of collection. This might cause unexpected results sometimes. For example:
// lettersOf will return a Seq[Char] of likely repeated letters, instead of a Set def lettersOf(words: Seq[String]) = words flatMap (word => word.toSet) // lettersOf will return a Set[Char], not a Seq def lettersOf(words: Seq[String]) = words.toSet flatMap (word => word.toSeq) // xs will be an Iterable[Int] val xs = Map("a" -> List(11,111), "b" -> List(22,222)).flatMap(_._2) // ys will be a Map[Int, Int] val ys = Map("a" -> List(1 -> 11,1 -> 111), "b" -> List(2 -> 22,2 -> 222)).flatMap(_._2)
the element type of the returned collection.
the function to apply to each element.
a new collection resulting from applying the given collection-valued function
f
to each element of this collection and concatenating the results.
(tuple2Zipped: Traversable[(El1, El2)]).flatMap(f)
Tests whether a predicate holds for all elements of this collection.
Tests whether a predicate holds for all elements of this collection.
Note: may not terminate for infinite-sized collections.
the predicate used to test elements.
true
if this collection is empty, otherwise true
if the given predicate p
holds for all elements of this collection, otherwise false
.
(tuple2Zipped: Traversable[(El1, El2)]).forall(p)
[use case]
the function that is applied for its side-effect to every element.
The result of function f
is discarded.
(tuple2Zipped: Traversable[(El1, El2)]).foreach(f)
[use case] Builds a new collection by applying a function to all elements of this collection.
Builds a new collection by applying a function to all elements of this collection.
the element type of the returned collection.
the function to apply to each element.
a new collection resulting from applying the given function
f
to each element of this collection and collecting the results.
(tuple2Zipped: Traversable[(El1, El2)]).map(f)
Converts this collection to a string.
Converts this collection to a string.
a string representation of this collection. By default this
string consists of the stringPrefix
of this collection, followed
by all elements separated by commas and enclosed in parentheses.
(tuple2Zipped: Traversable[(El1, El2)]).toString()